M1. (a) (i) conduction
convection
correct order only
(ii) to keep the ceramic bricks hot for a longer time
(b) (i) $E=P \times t$
18.2
allow 1 mark for correct substitution ie 2.6×7 provided that no subsequent step is shown
(ii) 91 (p)
or their (b)(i) $\times 5$ correctly calculated
accept $£ 0.91$ do not accept 0.91 without $£$ sign
(c) $E=m \times c \times \theta$

2250000
allow 1 mark for correct substitution ie $120 \times 750 \times 25$ provided that no subsequent step is shown answers 2250 kJ or 2.25 MJ gain both marks
(ii) atoms gain (kinetic) energy accept particles / molecules for atoms do not accept electrons for atoms oratoms vibrate with a bigger amplitude accept vibrate faster / more do not accept start to vibrate or atoms collide with neighbouring atoms
transferring energy to (neighbouring / other) atoms do not accept heat for energy

or

making these other atoms vibrate with a bigger amplitude accept faster / more for bigger amplitude mention of (free) electrons moving and passing on energy negates this mark
(b) (i) $5\left({ }^{\circ} \mathrm{C}\right)$ to $25\left({ }^{\circ} \mathrm{C}\right)$ either order
(ii) a correct example of doubling temperature difference doubling heat transfer eg going from 5 to $10\left({ }^{\circ} \mathrm{C}\right)$ difference doubles heat transfer from 30 to $60(\mathrm{~J} / \mathrm{s})$ accept for heat transfer number of joules / it allow 1 mark for correctly reading 1 set of data eg at $5{ }^{\circ} \mathrm{C}$ the heat transfer is 30
or
for every $5^{\circ} \mathrm{C}$ increase in temperature difference heat transfer increases by $30(\mathrm{~J} / \mathrm{s})$
no credit for stating they are directly proportional
(iii) 1800
(c) payback time calculated as 33 years calculations must be correct to score the first mark point explanations must relate to it not being cost effective
this is greater than lifetime of windowsortotal savings (over 30 years) $=£ 4800$ (1) this is less than cost of windows (1)or $\frac{5280}{30}=176$ (1)
this is more than the yearly savings (1)

M3. (a) (i) 20
(ii) convection
(iii) fit draughtproof strips
accept lay carpet accept fit curtains accept close doors / windows / curtains accept any reasonable suggestion for reducing a draught 'double glazing' alone is insufficient
(b) air is (a good) insulator
or air is a poor conductor
accept air cavity / 'it' for air
reducing heat transfer by conduction
accept stops for reduces
ignore convection
do not accept radiation
do not accept answers in terms of heat being trapped
(c) (i) most cost effective
accept it is cheaper or lowest cost accept shortest payback time accept in terms of reducing heat loss by the largest amount do not accept it is easier ignore most heat is lost through the roof
(ii) 4

M4. (a) conduction must be in correct order
convection
(b) (i) 70
accept \pm half a square (69.8 to 70.2)
(ii) 15
accept 14.6 to 15.4 for 2 marks
allow for 1 mark 70-55
ecf from (b)(i) \pm half a square
(iii) C
biggest drop in temperature during a given time
accept it has the steepest gradient this is a dependent
(iv) starting at $70^{\circ} \mathrm{C}$ and below graph for C must be a curve up to at least 8 minutes
(v) because $20^{\circ} \mathrm{C}$ is room temperature accept same temperature as surroundings
(c) (i) 6720

> correct answer with or without working gains 3 marks 6720000 gains 2 marks correct substitution of $E=0.2 \times 4200 \times 8$ gains 2 marks correct substitution of $E=200 \times 4200 \times 8$ gains 1 mark
(ii) the fastest particles have enough energy
accept molecules for particles
to escape from the surface of the water
therefore the mean energy of the remaining particles decreases accept speed for energy
the lower the mean energy of particles the lower the temperature (of the water)
accept speed for energy

M5. (a) (matt) black is a good emitter of infrared / radiation accept heat for infrared / radiationignore reference to good absorberattracts heat negates this marking point
to give maximum (rate of) energy transfer (to surroundings)
accept temperature (of coolant) falls fast(er) accept black emits more radiation for 1 mark black emits most radiation / black is the best emitter of radiation for 2 marks
(b) the fins increase the surface area accept heat for energy
so increasing the (rate of) energy transferorso more fins greater (rate of) energy transfer
(c) 114000
allow 1 mark for correct temperature change, ie $15\left({ }^{\circ} \mathrm{C}\right)$
or
allow 2 marks for correct substitution, ie $2 \times 3800 \times 15$ answers of 851200 or 737200 gain 2 marks
or
substitution $2 \times 3800 \times 112$ or $2 \times 3800 \times 97$ gains 1 mark an answer of 114 kJ gains 3 marks
(d) increases the efficiency
less (input) energy is wasted
accept some of the energy that would have been wasted is (usefully) used
or
more (input) energy is usefully used
accept heat for energy

M6. (a) (i) $5(.0)$
(ii) 35 or their (a)(i) $\times 7$ correctly calculated allow 1 mark for correct substitution, ie 5 or their (a)(i) $\times 7$ provided no subsequent step shown
(iii) $\quad 525(\mathrm{p})$ or(£) 5.25 ortheir (a)(ii) $\times 15$ correctly calculated if unit p or $£$ given they must be consistent with the numerical answer
(iv) decreases
temperature difference (between inside and outside) decreases accept gradient (of line) decreases
do not accept temperature (inside) decreases do not accept graph goes down
(b) air (bubbles are) trapped (in the foam) do not accept air traps heat foam has air pockets is insufficient
(and so the) air cannot circulate / move / form convection current air is a good insulator is insufficient no convection current is insufficient answers in terms of warm air from the room being trapped are incorrect and score no marks

